

Using SystemVerilog Assertions and
Zocalo Zazz to Improve IP Quality

Eric Deal
Cyclic Design

eric.deal@cyclicdesign.com

Overview

Design and verification engineers detect simulation
problems and pinpoint failure points within a design using
assertions. Despite the added value of SystemVerilog
assertions (SVAs), barriers to implementing assertions
have prohibited wider adoption throughout the industry.

In particular, IP providers and users could benefit greatly
from the inclusion of SVA within the IP delivery. So why
aren't more companies using assertions as part of their
design flow?

The problem lies in the complexity of
implementing assertions. Designers must learn
new language constructs and overcome the
daunting task of even knowing where to start.

What are Assertions?

Assertions are “rules” coded into a design that monitor the
activity of signals to check for non-compliant behavior. They
can be viewed as an enhancement of documentation that
may (or may not) accompany a design. During simulation,
these assertions are checked and violations reported to the
user.

valid_until_ready: assert property (@(posedge clk)
valid & ~ready |=> valid

);

Groups of these simple rules, relating how
signals interact, can be used together to check
complex protocols.

Example: When valid goes active (high), it must remain high until ready is
asserted (or more simply: if valid is high and ready is not asserted, valid must
remain high the following cycle):

Assertion Use in Design Teams

Logic designers understand the implicit protocol rules used
by low-level signals, so the use of low-level signals is often
not formally documented. Assertions ensure the proper
operation of the logic during testing and check that the logic
continues to operate properly after design modifications.

Assertions also help flag and identify bugs at the source,
saving debug time. Furthermore, they can also identify
issues that might not be detected by a particular test.

Assertions allow verification engineers to more
quickly diagnose test failures and issues resulting
from behavioral models which violate minimally
documented protocols.

More Efficient Development

Ultimately, assertions reduce communication time
between design and verification engineers, speeding
development by:

● Isolating design bugs more quickly
● Identifying and fixing testbench behavioral issues with less

interaction between design and verification.

The assertion
says the model
didn't drive the

protocol correctly...
I need to fix that.

verif

I found a
bug in

your logic.

verif verifdesign design

(next day)

It looks like
the model didn't

drive the
protocol correctly. Thanks...

I'll fix it.

I'll look at
it and let
you know

what I find.

With AssertionsWithout Assertions

Communication Loop

Interactions between the designer and user can be
viewed as a communication loop.

Assertions allow the loop to be short-circuited for a large
subset of interactions, improving design and verification
efficiency.

verif design

Without
Assertions

verif design

With
Assertions

IP Has a Long Communication Loop

For IP, the designer and user are likely separated by different
locations, timezones, companies, and possibly language barriers.
Any reduction in round-trip communications required saves a lot of
time and money.

user

IP provider

Assertions accomplish this by notifying the IP user of an
integration error immediately. It's like having an on-site
application engineer watching every simulation.

The customer benefits from improved IP quality, and
the IP provider benefits from reduced support requests
and more satisfied customers.

Enabling Assertions

So what can be done to empower assertion usage within IP?

Zocalo approached Cyclic Design to get feedback on an
upcoming product called Zazz, which aimed to ease the use
of assertions.

The resulting collaboration between Zocalo and Cyclic Design
to identified and solved two major problems designers have
with implementing SystemVerilog assertions:

● Where to start

● How to code assertions design

?? ?

Zazz - BirdDog

Where to start: Assertion placement is difficult for many
engineers. A Zazz feature called Bird Dog identifies and ranks
candidate signals for assertions.

Based on initial manual assertion
placement in the Cyclic Design IP,
we developed an algorithm that
mimics, and improves upon, the
process an engineer would use to
identify candidates for assertions.

Insert
Assertion

Here

Zazz - Visual SVA

How to code assertions: While discussing assertion coding
complexity, we realized that diagrams on a whiteboard most
effectively illustrate the complex event structure of SVAs.
Why not incorporate this functionality into a design tool?

property userSVA;
 ($rose(syndrome_pop) [­>1]) |=>
 ((syndrome_pop) [*7]);
endproperty

Zazz - Visual SVA

The Visual SVA Zazz feature enables the creation of very
complex assertions without requiring expert knowledge of
the SVA language.

property Stable_blocksize_and_ecc;
 (init [­>1]) |=>
 ($stable(blocksize) throughout
 ($stable(ecc_level) throughout
 ((((shift) ##[0:5]) [*255])
 ((shift & last_data) [­>1])
)
)
);
endproperty

Conclusion

Zazz enabled Cyclic Design to incorporate more complex
assertions into its IP and to identify areas where
additional assertions could be applied.

Inclusion of these assertions has minimized the support
required for the IP; customers need little integration
support and are able to self-diagnose problems in the
interface between the controller and IP.

The assertions have identified several integration issues
that would have taken much longer to discover or
possibly not have been discovered manually. Ultimately,
Cyclic Design's customers indicate that the assertions
gave them more confidence in both the IP and their use
of it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

